THE WAY MEMORIES ARE ANCHORED IN THE BRAIN PLAYS A ROLE, NEUROPSYCHOLOGIST BORIS SUCHAN EXPLAINS
By Boris Suchan on November 15, 2018
Most of us learn how to ride a bike during childhood. But as we grow
older, many of us stop riding and put those once-beloved bikes in
storage. Years later, when we discover these relics and hop on, it’s as
if we never stopped biking.
This is surprising because our memories let us down in so many other
instances, such as remembering the name of a place or a person we once
knew or where we put our keys. So how is it that we can ride a bicycle
when we haven’t done so in years?
As it turns out, different types of memories are stored in distinct
regions of our brains. Long-term memory is divided into two types:
declarative and procedural.
There are two types of declarative memory: Recollections of
experiences such as the day we started school and our first kiss are
called episodic memory. This type of recall is our interpretation of an
episode or event that occurred. Factual knowledge, on the other hand,
such as the capital of France, is part of semantic memory. These two
types of declarative memory content have one thing in common—you are
aware of the knowledge and can communicate the memories to others.
Skills such as playing an instrument or riding a bicycle are,
however, anchored in a separate system, called procedural memory. As its
name implies, this type of memory is responsible for performance.
One of the most famous studies showing the separate memory systems
was that of an epileptic named Henry Gustav Molaison (aka H. M.). In the
1950s he underwent the removal of portions of his brain, including
large parts of his hippocampus. After the operation doctors found that
although the number of seizures had decreased, H. M. was unable to form
new memories. Many of his memories of the time before the operation were
also erased.
To learn more about his amnesia, neuropsychologists carried out
various tests with H. M. In one, they asked him to trace a five-pointed
star on a sheet of paper while only looking at it and his hand in a
mirror—meaning the image was reversed. Although H. M.’s hand–eye
coordination skills improved over the several days he performed this
task, he never remembered performing it. This meant that he could
develop new procedural, but not declarative, memories.
Is procedural knowledge then fundamentally more stable than explicit
knowledge? As it turns out, the former is more resistant to both loss
and trauma.
Even with traumatic brain injury the procedural memory system is
hardly ever compromised. That’s because the basal ganglia, structures
responsible for processing nondeclarative memory, are relatively
protected in the brain’s center, below the cerebral cortex. However,
it’s not clear, beyond brain damage, why procedural memory contents are
not as easily forgotten as declarative ones are. According to one idea,
in the regions where movement patterns are anchored fewer new nerve
cells may be formed in adults. Without this neurogenesis, or continuous
remodeling in those regions, it’s less likely for those memories to get
erased.
One thing we know for sure, however, is simple sequences of movements
we internalize, even far in the past, are typically preserved for a
lifetime. Or as the saying goes, it’s “just like riding a bicycle.”
No hay comentarios:
Publicar un comentario